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Abstract

Background and Objectives: This paper presents the results of a Machine-

Learning based Model Order Reduction (MOR) method applied to a complex

3D Finite Element (FE) biomechanical model of the human tongue, in order

to create a Digital Twin Model (DTM) that enables real-time simulations.

The DTM is designed for future inclusion in a computer assisted protocol for

tongue surgery planning.

Methods: The proposed method uses an “a posteriori” MOR that allows,

from a limited number of simulations with the FE model, to predict in real

time mechanical responses of the human tongue to muscle activations.

Results: The MOR method is evaluated for simulations associated with

separate single tongue muscle activations. It is shown to be able to account

with a sub-millimetric spatial accuracy for the non-linear dynamical behavior

of the tongue model observed in these simulations.

Email address: maxime.calka@univ-grenoble-alpes.fr (Maxime Calka)

Manuscript accepted for publication in Computer Methods and Programs in Biomedicine



Conclusion: Further evaluations of the MOR method will include tongue

movements induced by multiple muscle activations. At this stage our MOR

method offers promising perspectives for the use of the tongue model in a

clinical context to predict the impact of tongue surgery on tongue mobility.

As a long term application, this DTM of the tongue could be used to predict

the functional consequences of the surgery in terms of speech production and

swallowing.

Keywords: Real-time simulation, Model Order Reduction, Digital Twins,

Human tongue

1. Introduction1

1.1. Medical context2

Nowadays, tongue is the most common intraoral site for cancer [1]. In3

France, tongue cancer affects 4200 new patients each year [2] and all around4

the world it represents 30% to 50% of the oral cavity tumors [1, 3].5

A common technique to treat patients suffering from tongue cancer is the6

exeresis of a part of the tongue [4]. This surgery can have severe consequences7

on tongue mobility and deformation capabilities, inducing impairments of8

mastication, deglutition and speech production which can reduce drastically9

the quality of life of patients [5]. Quantitative predictions of the functional10

consequences of this surgery is very complex for clinicians.11

The present study is part of a long-term project aiming at developing a12

patient-specific “in silico” surgery planning system that should quantitatively13

predict the functional consequences of orofacial surgery. This will require:14
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• to automatically generate patient-specific 3D Finite Element (FE) tongue15

models [6].16

• to quantitatively predict, within a time interval compatible with clinical17

constraints, the functional consequences of anatomical changes (e.g.18

tumor resection with flap reconstruction [7]) on swallowing and speech.19

Achieving real-time simulations is the focus of our paper, and we propose20

for this to use a Model Order Reduction (MOR) method based on Machine-21

Learning techniques.22

The tongue is a complex organ with incompressible tissues and nonlinear23

viscoelastic properties [8, 9]. Numerical simulations with an FE model of the24

human tongue, which accounts for the non-linear mechanical properties of25

tongue tissues and accurately implements tongue muscle anatomy, can take26

very long time (on an Intel(R) Xeon(R) with 16Gb and 8 logical cores about27

one hour to simulate a movement of some tens of milliseconds), which makes28

it difficult to use such a model in a clinical context [10, 11]. To study the29

functional outcome of the surgery in terms of speech production or swallow-30

ing, a key point is to be able to simulate tongue trajectories over time and not31

just to produce the final tongue shape resulting from muscles contractions.32

Hence a transient FE analysis, which solves movement equations, is required.33

In this context a difficulty is that tongue can move quite rapidly in speech34

production (10 to 20 cm/s), which increases the impact of visco-elastic prop-35

erties on movement. To account for this phenomenon, the challenge of MOR36

techniques is to capture the non-linear behavior of the tongue.37
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1.2. Related Works38

MOR methods have recently received a growing interest to challenge the39

real-time simulation problem in computer-aided surgery [12]. These methods40

allow to obtain real-time simulations by reducing the computational complex-41

ity without simplifying the physics of the model.42

Projection-based and collocation-based MOR methods are the most pop-43

ular ones [13, 14, 15, 16]. Projection-based MOR methods are divided in44

two categories: (1) a posteriori methods, such as the Proper Orthogonal45

Decomposition, which create a Reduced Order Model (ROM) from a large46

set of simulations called “Snapshots” [13] and require a computationally in-47

tensive offline phase; (2) a priori methods, such as the Proper Generalized48

Decomposition, which reduce the model during the problem solving process49

itself [14, 17]. A method of the former type was applied to computational50

medicine by Niroomandi et al. [15] in the case of non-linear quasi-static and51

large deformation problems to simulate the palpation of the human cornea.52

In [16] the ROM was created with a collocation-based MOR method called53

Space Subspace Learning [18]. The authors have developed a Digital Twin54

Model (DTM) of the liver by considering the large displacement approach in55

linear elasticity and quasi-static way.56

1.3. Overview57

Unlike previous studies, a strong constraint in physical modeling of tongue58

in speech production and swallowing is the necessity to solve movement equa-59

tions over time. To do so we propose to rely on an a posteriori machine-60

learning-based MOR (ML-based MOR) method using a recurrent neural net-61

work. We tested the capacity of the ML-based MOR method to account for62
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the dynamical characteristics of the tongue, by designing and evaluating two63

reduced models of the tongue in the aim to account for the movements of64

the tongue in response to the separate activations of two important tongue65

muscles, which are associated to two different kinds of tongue displacements.66

Below, the MOR method and the biomechanical tongue model are described.67

Then, the FE simulations, which resulted from these two separate muscle ac-68

tivations and served in the learning phase of the MOR are presented, and the69

capacity of the ROM to estimate tongue displacements in response to theses70

single muscle activations is evaluated.71

2. Materials & Methods72

2.1. ML-based MOR73

In sum, we expect the ROM to functionally accounts for the dynamical74

behavior of the biomechanical tongue model over time. Tongue deformation75

over time is induced in the biomechanical model by the time variations of m76

muscle commands {gk(t), k ∈ [1,m]}, called inputs. This tongue deformation77

is described with n time varying spatial coordinates of the nodes located on78

the surface of the tongue model, {pi(t), i ∈ [1, n]}, called outputs. Input and79

output variables are sampled at nt regular time steps during the course of80

the movement. Thus, the mechanical response of the biomechanical tongue81

model to muscle commands is described by two matrices, the input matrix82

Gm,nt called “excitation” and the output matrix Pn,nt . In the FE formula-83

tion this input-output relation is computed with a full-order transient solver.84

In the MOR this relation has to be learned from a limited number of sets85

{P̂n,nt , Ĝm,nt} (called scenarios), in order to build a ROM that accounts for86
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the observed scenarios and generalizes the relation to unknown situations.87

We used the MOR technique developed by ANSYS R© called “Dynamic ROM88

Builder” (DRB), which is accessible in the ANSYS Twin Builder product [19].89

The DRB algorithm is being patented1. The modeling process is described90

in Figure 1 and consists of two steps: (i) an offline phase involving, first,91

a reduction of dimensionality of the output vector using a Singular Value92

Decomposition (SVD) that generates new variables X̂r,nt from the original93

variables P̂n,nt and, second, the ROM building using a learning method that94

optimizes the structure of the ROM from the set of X̂r,nt variables ; (ii)95

an online phase in which mechanical responses can be generated from new96

values of the muscle commands Gm,nt , first using the ROM which generates97

variables XROMr,nt
in the space resulting from the dimensionality reduction98

induced by the SVD carried out on the original data, and second by trans-99

forming the outputs of the ROM into estimations of the surfacic tongue nodes100

coordinates PROMn,nt
via an inverse transform of the SVD.101

2.1.1. Learning phase: ROM building102

The DRB algorithm models the dynamical behavior of the biomechanical103

tongue model, as described by variable X, with two equations:104

Ẋ(t) = f(X(t), G(t)) (1)

X(0) = X0 (2)

1This application can be referenced as US Patent Application No. 16,527,387, entitled

SYSTEMS AND METHODS FOR BUILDING DYNAMIC REDUCED ORDER PHYS-

ICAL MODELS, filed July 31, 2019.
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Figure 1: Overview of the different steps performed during the simulation of the Dynamic

ROM Builder process. Variables G (dimension m,nt) are the excitations that generate

tongue deformations (Ĝm,nt
are the excitations associated with the learning scenarios;

Gm,nt
are the excitations associated with the simulations with the ROM). Variables P

(dimension n, nt) describe the variation of the coordinates of the n nodes on the surface

of the tongue model over the nt time steps of the simulations (P̂n,nt are the data included

in the learning scenarios; PROMn,nt
are the coordinates of the nodes resulting from the

simulations with the ROM). Variables X (dimension r, nt, with r smaller than n) are

the mode coefficients, which are in the space resulting from the dimensionality reduction

applied to the space of the surfacic tongue nodes thanks to the SVD (see equation (6))

(X̂r,nt
results from the SVD applied to P̂n,nt

; XROMr,nt
is the output of the ROM, which is

transformed into PROMn,nt
via the inverse transform of the SVD as shown in equation 7).
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• X(t) is the output vector (dimension r) at time t of the ROM105

• Ẋ(t) is the first derivative of X(t)106

• G(t) is the input vector (dimension m) at time t107

• f is a non-linear function which has to be learned from the set of108

variables {X̂r,nt , Ĝm,nt} corresponding to the learning scenarios.109

The learning process aims at finding the non-linear function f that min-110

imizes the average quadratic error E (equation 3), computed over the full111

set of learning scenarios, between the variables X̂r,nt computed with the full-112

order transient FE model and the outputs Xr,nt of the ROM predicted with113

equations (1) and (2) for the input vectors Ĝm,nt :114

E =

(
1

r

n∑
l=1

(
1

nt

nt∑
j=1

(Xl,j − X̂l,j)2
))

(3)

Function f is a quadratic function. It is implemented as a 3-layer recur-115

rent neural network with the same number of variables in the hidden and the116

output layers (see Figure 2a).117

The activation function used in the hidden and output layers is a sigmoid.118

Conventional gradient descent optimization methods [20] are used in the op-119

timization process of f , which stops when error E (equation 3) becomes120

smaller than a predefined user-dependent threshold ε. If this threshold can-121

not be reached, a free variable ij, j ∈ [1, nt], is added in the neural network122

implementation of f . A free variable can be considered as a memory cell in123

the neural network, which is external to the set of input and output variables,124

and which value is adapted along with the other parameters of the network125

at each time step. Adding a free variable in the network is done by adding an126
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(a) Original neural network

(b) Addition of a free variable

Figure 2: Scheme of the recurrent neural network implementation (at time step j). Panel

a: Usual 3-layer recurrent network representation; Panel b: 3-layer recurrent network

including free-variables to account for high-frequency dynamical properties.
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output cell ij and a corresponding input/hidden cell in the recurrent neural127

network (see Figure 2b).128

Each new free variable is initialized as the time-varying error averaged129

on all the network outputs: ij = 1
r

∑r
l=1(Xl,j − X̂l,j) with j varying from130

1 to nt. Then, the optimization process starts over. If again the required131

threshold error cannot be reached, another free variable is added, using the132

same procedure, and the optimization process starts over. This procedure133

is repeated as many times as necessary until the (minimum) required error134

threshold ε is reached. Assuming k iterative steps, in which k free variables135

are added, the optimal ROM models the dynamical behavior of the FE tongue136

model according to equation (4),137

Ẋj

İj

 = f

(Xj

Ij

 , Gj

)
, j ∈ [1, nt], (4)

in which Ij and İj are k dimensional vectors corresponding to the free vari-138

ables that were generated along the iterative optimization process and their139

first time derivatives. The inclusion of the free variables is the innovative140

part of the DRB method. It enables us to obtain a better approximation141

of dynamical behavior of the biomechanical tongue model by accounting142

for complex non-linearities and higher order time-dependency characterizing143

this behavior, without increasing the depth (i.e. the number of layers) of144

the recurrent neural network, which avoids “vanishing gradients” problems145

[21, 22].146
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2.1.2. Output vector: Reduction of dimensionality147

Ultimately, the outputs of the ROM should enable to generate at each148

time-step an accurate approximation of the vector P of the coordinates of the149

surfacic nodes of the biomechanical tongue model. Hence, at a first glance150

it would be natural to design the ROM directly from the P̂n,nt matrices of151

the learning scenarios, and, in turn, to have the ROM generate directly es-152

timations of Pn,nt coordinates in the consumption phase. However, given153

the high mesh density required for accurate simulations, the dimensional-154

ity n of vector P is very high. Using this vector as output of the recurrent155

network of Figure 2 would induce a considerable computational complexity156

for the learning phase. To reduce this complexity of the output space, the157

DRB method uses Singular Value Decomposition (SVD). SVD was chosen158

instead of recent and statistically more powerful techniques, such as autoen-159

coders, because it makes it possible to keep the physical components that160

are the most influential on tongue movements, such as inertia, incompress-161

ibility, and the fundamental law of dynamics, and to eliminate components162

related to computational inaccuracy without reliable physical foundations.163

SVD enables us to reduce the dimensionality of the output matrix by first164

decomposing the matrix P̂n,nt of the coordinates of the n surfacic nodes at165

the nt time steps of the learning scenarios as follows:166

P̂n,nt = Un,n · Σn,nt · V ᵀ
nt,nt

(5)

where U and V ᵀ are unitary matrices corresponding to the left and right167

singular vectors of P̂n,nt and Σn,nt is a diagonal matrix which terms are the168

singular values of matrix P̂n,nt , ordered in descending magnitude from the169
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first to the last line. This decomposition allows us to do an approximation170

of P̂n,nt by setting to zero the singular values that are smaller than a given171

threshold. Thus the dimensionality of Σn,nt is reduced to (r, r) and matrix172

P̂n,nt is approximated by P̃n,nt as follows:173

P̃n,nt = Un,r · Σr,r · V ᵀ
r,nt

(6)

Hence, the coordinates of the n surfacic nodes are approximated with enough174

accuracy on the basis of the first r left singular vectors, called modes. To175

these modes are attached at each time-step j, j ∈ [1, nt], r mode-coefficients176

X̂r,j that are computed, consistent with equation (6), with equation (7):177

X̂r,nt = Σr,r · V ᵀ
r,nt
. (7)

In the learning phase of the ROM, the recurrent neural network (Figure 2)178

is optimized in order for its outputs to satisfactorily approximate the matrix179

X̂r,nt over the whole set of scenarios.180

Once the ROM is learned, for the simulations with the ROM, matrix181

Pn,nt of the n surfacic nodes of the biomechanical tongue model is estimated182

from the output matrix Xr,nt of the ROM, in agreement with equation (6),183

by multiplying Xr,nt with the matrix Un,r of the r first left singular vectors184

of P̂n,nt :185

PROMn,nt
= Un,r ·Xr,nt (8)

Importantly, SVD provides a linear account of the spatial relation be-186

tween surfacic nodes, whereas tongue strain in response to stress is known187

to obey non-linear mechanical laws. Despite this apparent contradiction,188
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SVD has for our modeling work a crucial feature: the physical phenomena189

responsible for the tongue movement characteristics of largest magnitudes,190

namely the mass, the stiffness and the damping factor, are represented by191

the largest singular values. They also correspond to low-frequency modes of192

the mechanical system. Thus, SVD essentially keeps low frequency modes.193

Consequently, the prediction error of SVD, i.e. the difference between the194

actual time-varying positions of the surfacic nodes (P̂n,nt) and their lower195

dimensional account (P̃n,nt) after SVD, mainly includes high frequency com-196

ponents. Importantly, these high-frequency components are the consequence197

of different phenomena, of which only a part actually reflects the true com-198

plexity of the physical properties of the tongue, which the SVD cannot ac-199

count for faithfully because of its linearity properties. Another part is due to200

high frequency computational noise intrinsically associated with FE solvers,201

which it is in fact interesting not to integrate in the modeling since they202

do not correspond to real characteristics of the tongue. By selecting the203

low-frequency modes, SVD removes high frequency noise that has no physi-204

cal meaning, but also those resulting from the physics. The DRB approach205

uses free variables to put back into the model physically meaningful high-206

frequency components. Indeed, it is believed that consistency in dynamical207

behavior of the biomechanical model across simulations makes it likely that208

the high frequency components included in the added free variables account209

mainly for real physical phenomena.210

2.1.3. 3D biomechanical model of the human tongue211

The tongue model used for the simulations is described in [23]. It is212

based on an FE mesh with 7763 nodes and 8780 hexahedral elements. The213
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constitutive law used to model the elastic properties of the tongue tissue is a214

Mooney-Rivlin material with two parameters C10 and C20 (respectively equal215

to 192 Pa and 90 Pa). Tongue viscosity is approximated with a Rayleigh216

model (Rayleigh coefficients: α = 20 and β = 0.0). To model the quasi-217

incompressibility of the tissue, the Poisson ratio is fixed to v = 0.4999. No-218

displacement “boundaries conditions” are defined on the nodes in contact219

with the jaw and on the lowest boundary of the mouth floor.220

Figure 3 shows the mesh of the tongue model and highlights in blue the221

two muscles which will be independently activated in the numerical simu-222

lations used in the learning phase, namely the styloglossus (SG) and the223

genioglossus posterior (GG-P).224

(a) Styloglossus (b) Genioglossus posterior

Figure 3: FE mesh of the tongue model used for the simulations with the two activated

muscles highlighted in blue. Each muscle activation is modeled as a transversely isotropic

material with an activation along the main direction of the fibers. The red point on the

tongue tip, located in the mid-sagittal plane of the tongue, is used below to illustrate the

accuracy of the predictions with the ROM.
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2.2. Simulation data225

The learning phase is based on a set of scenarios. Each scenario consists226

of two sets of data called “excitation” (inputs) and “output”. The excita-227

tion Ĝj, j ∈ [1, nt] is a time-varying activation of one of the two considered228

muscles and the output X̂j, j ∈ [1, nt] corresponds to the r mode-coefficients229

computed from the coordinates of the surfacic nodes (1861 nodes) according230

to equation (7).231

2.2.1. Excitation232

In this study we have built two different ROMs of the biomechanical233

tongue model corresponding to two quite different kinds of deformations.234

The ROM was learned from simulations of tongue movements in response235

to the activation of an intrinsic muscle located in the center of the tongue,236

the Genioglossus Posterior (GG-P), which is responsible for protrusion and237

elevation of the tongue [10]. The second ROM was learned from simulations238

of tongue movements in response to the activation of an extrinsic muscle,239

the Styloglossus (SG), which raises and retracts the tongue [10]. Thus two240

sets of excitations are studied: (1) activations of the GG-P muscle alone; (2)241

activations of the SG muscle alone. In both cases, muscle activation pat-242

terns consist of a linearly increasing phase followed by a stabilization phase243

(Figure 4). This approach does not aim at building a unique ROM of the244

tongue, which could account for every kind of tongue deformation associated245

with any pattern of muscle activations (such an objective would require ex-246

tensive coverage of the motor command space), but, more modestly, to assess247

the capacity of the DRB method to account for different complex non-linear248

time-deformations of the tongue along different directions. This is an essen-249
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tial prerequisite for any further effort to build a unique and exhaustive ROM250

of the tongue.251

Figure 4: Range of variation of all possible excitation patterns used in the scenarios, either

with GG-P or with SG . In red, the pattern corresponding to the maximum stress in the

stabilization phase with a minimum duration of the increasing phase of muscle activation.

In green the pattern corresponding to the minimum stress in the stabilization phase with

a maximum duration of the increasing phase of the activation. The rectangle in grey

corresponds to the whole range of possible parameters values of the simulations.

In the FE model muscle activation is directly defined as a stress that in-252

creases from zero to the value σ (expressed in Pa) reached in the stabilization253

phase. σ is specified in reference to a maximum value σmax via an activation254

parameter α in the interval [0; 1] such that σ = α× σmax. In our scenarios α255

varies in the range [0.2; 1.0]. All the simulations have a total duration ttotal of256

0.35 s with a duration of the initial linearly increasing phase tα in the range257

[0.05 s, 0.11 s]. These durations have been chosen because they correspond258

to the generation of realistic tongue movements in speech production with259
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the biomechanical model.260

Figure 5 illustrates how the non-linear dynamics of tongue tissue shapes261

the kinematics of the tongue, with the displacement along the 2 axes of the262

mid-sagittal plane of a point located on the tip of the tongue in the mid-263

sagittal plane (red dot on Figure 3) during a GG-P activation. The model264

being symmetrical nodes located in the mid-sagittal plane do not move along265

the y direction orthogonal to the mid-sagittal plane.266

Figure 5: Tongue displacement of a node (represented Figure 3 in red) after activation

of the GG-P. Red: Front back horizontal direction x; Blue: Vertical direction z. α =

0.6, tα = 0.09 s

2.2.2. Output267

The 3D motion of the 1861 surfacic nodes is used to evaluate the perfor-268

mance of the ROM.269

2.3. Learning scenarios270

Two sets of 20 simulations were conducted, one for the GG-P and one271

for the SG, in order to set up the learning scenarios. These simulations were272
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performed with excitation data whose parameters α and tα had steps of 0.2273

and 0.02 s respectively within the ranges of variation given above, forming a274

grid represented on Figure 6.275

Figure 6: Set of learning scenarios for each activation cases (SG, GG-P)

For the learning of the two ROMs we set minimum error threshold ε to276

obtain an accuracy of less than 1/10mm (see section 2.1.1), which enabled us277

to have an average root mean square error on the evaluation scenarios (see278

below) in the order of a few tenths of millimeters.279

2.4. Evaluation scenarios280

Two sets of 20 simulations were used for the evaluation scenarios. Pa-281

rameters α and tα were randomly distributed inside four subparts of the grid282

of Figure 7 to cover a sufficiently large range of possibilities without using283

any set of parameters already used in simulations that served for learning.284
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Figure 7: Set of excitations used in the evaluation scenarios for a single muscle

2.5. Metric285

To quantitatively evaluate the ROM accuracy, the metric used is the286

average root mean square error (average RMS error) between the coordinates287

of the surfacic nodes as approximated with the ROM and the coordinates288

computed with the full-order transient FE model. It is computed with a289

formula similar to the one of equation 3, in which X̂n,nt and Xn,nt are replaced290

by the matrices of the approximated and ground-truth coordinates (PROM291

and P ) of the nodes. An average RMS error of less than a few tenths of a292

millimeter is considered to reveal a satisfactory quality.293
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3. Results & Discussion294

3.1. Results295

Figure 8 shows the original and the approximated x and z displacements296

of a node on the tongue tip (red dot on Figure 3) associated with the ROM297

learned from the activations of the GG-P alone (Panel a) and with the model298

learned from the activations of the SG alone (Panel b). In both cases, only299

one free variable was required for the optimal ROM. We see, on these exam-300

ples, that the DRB method provides a good approximation of the ground-301

truth deformations of the biomechanical tongue model over time in response302

to either the GG-P or the SG muscle.303

The average and standard deviation across surfacic nodes of the RMS304

error computed over the whole movement are given in Figure 9 for each of305

the 20 scenarios separately. Depending on the scenario the RMS error varies306

between 0.038 mm and 0.074 mm for the GG-P activation, and between 0.084307

mm and 0.146 mm for the SG activation. Standard deviation is between 0.011308

mm and 0.018 mm for the GG-P and between 0.028 mm and 0.062 mm for309

the SG. This is in the order of magnitude of the accuracy reached by the most310

sophisticated tongue movement tracking systems such as Electro Magnetic311

Articulometer (EMA) [24].312

Figure 10 illustrates for 4 evaluation scenarios associated with 4 increasing313

levels of each muscle activation the spatial distribution over the surfacic nodes314

of the prediction error, computed as the module of vector (P − PROM). We315

observe that the prediction error is quite evenly distributed and is in general316

low, except in the posterior velar region where the external branches of the317

SG, arising from the styloid process, enter the body of the tongue. The318
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external branches of the SG are not represented in Figure 10a in order to focus319

on the error map on the tongue body, which determines vocal tract geometry.320

This strong and localized prediction error deserves further investigation.321

We assessed the stability of mechanical equilibrium predicted with the322

ROM in the stabilization phase by extending the duration of this phase in323

new simulations. Figure 11 shows the vertical displacement of the tongue324

tip node generated with the ROM (learned with a ttotal = 0.35 s) for a total325

duration ttotal of one second, with a SG activation of α = 0.24, tα = 0.076 s.326

The simulated movement is stable with an RMS error averaged on the surfacic327

nodes of 0.29 mm and a standard deviation of 0.19 mm.328

3.2. Discussion329

Using the DRB method we have designed two different ROM in order330

to account for the deformations of the tongue in response to the separate331

activations of the GG-P and the SG. The results are encouraging as concerns332

the capacity of the DRB method to account for the dynamical behavior of333

tongue tissues. Each ROM generates in real time tongue movements that334

are close to those generated with the original biomechanical model, with a335

sub-millimetric average RMS error. Slight differences are observed in the336

approximation quality between the ROM based of GG-P activations and337

the one based on SG activations. Figure 8 provides a possible explanation:338

the trajectory generated with the biomechanical model is more noisy for the339

activation of the SG, probably because of some numerical inaccuracies.340

Figure 8 suggests that in the considered scenarios the node trajectories341

are not so complex, and are similar to the indicial response of an under-342

damped second order system. This is consistent with the fact that only one343
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(a) Genioglossus posterior

(b) Styloglossus

Figure 8: Examples of displacements of a node on the tip of the tongue (red point repre-

sented in Figure 3) in response to an activation of the GG-P alone (Panel a) and an acti-

vation of the SG alone (Panel b). Red curves: displacement resulting from the simulations

with the biomechanical model along the vertical direction z. Orange curves: displacement

computed with the ROM along z. Blue curves: displacement resulting from the simulations

with the biomechanical model along the front-back horizontal direction x. Cyan curves:

displacement computed with the ROM along x. In both figure, α = 0.29, tα = 0.081 s
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(a) Activations of the genioglossus posterior alone

(b) Activations of the styloglossus alone

Figure 9: Average (black dot) and standard deviation (orange segment around the dot)

across nodes of the RMS error computed over the whole movement for each of the 20

scenarios.
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(a) Prediction error for styloglossus activations

(b) Prediction error for genioglossus posterior activations

Figure 10: Distribution (Heat Map) over the nodes on the tongue surface of the prediction

error (in mm, see text) for the activation of the SG alone (Top panel) and the GG-P alone

(Bottom panel), corresponding to 4 increasing levels of activation (from (a) to (d)). The

heat map representing this distribution is superimposed on the tongue shape achieved

at the corresponding time of the movement. The activations are defined such as: a)

(α = 0.29, tα = 0.081 s), b) (α = 0.44, tα = 0.085 s), c) (α = 0.69, tα = 0.065 s), d)

(α = 0.88, tα = 0.104 s).
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Figure 11: ROM estimation of the displacement a node on the tip of the tongue (red dot

on Figure 3) over a total duration ttotal = 1 s along the z axis for a SG activation with

α = 0.24, tα = 0.076 s

free variable was required for the optimal ROMs and it could explain the344

good approximation that we have obtained at this stage for both ROMs.345

Further work will involve more complex muscle activation scenarios in which346

mechanical non-linearities will have stronger consequences on tongue move-347

ments. We will consider cases in which several muscles are activated at the348

same time, with different timings, as well as situations involving contacts349

between tongue and vocal tract boundaries.350

Importantly, Figure 9 & 10 show that the final configurations are pre-351

dicted accurately. This makes us confident in the capacity of the ROM to352

reliably assess, in the context of clinical applications, the range of speech353

articulations that a patient will be able to produce in post-surgical condi-354

tions. In addition, the Figure 11 shows that the ROM is able to provide355

accurate and stable predictions beyond durations used in learning. This sug-356
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gests that the MOR method learns the dynamics of the tongue model and not357

only statistical relations between inputs and outputs as given in the learning358

scenarios.359

4. Conclusion360

Two distinct ROMs have been constructed on two kinds of muscle ac-361

tivations (SG alone and GG-P alone) with the DRB method, which relies362

on a 3-layer recurrent neural network and the original use of free variables.363

This method doesn’t increase the deepness of the neural network, which has364

the advantage of not requiring deep-learning methods based on large data365

sets with possible vanishing gradient problems. Our first results show that366

the designed ROM predicts tongue movements in response to single muscle367

activations in real time with a sub-millimetric average accuracy.368

Further evaluations are required in situations where stronger non-linearities369

are involved and more complex muscle activation patterns are used. The ul-370

timate goal is to have a unique ROM accounting for the global dynamics of371

our biomechanical tongue model in response to any pattern of muscle acti-372

vations. This is a basic requirement in order to use this ROM method with373

models of resected and reconstructed tongues of patients included in clinical374

protocols.375
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